
35th BALKAN MATHEMATICAL OLYMPIAD
Belgrade, Serbia (May 9, 2018)

Problem 1.

A quadrilateral ABCD is inscribed in a circle k, where AB > CD and AB is not
parallel to CD. Point M is the intersection of the diagonals AC and BD and the
perpendicular from M to AB intersects the segment AB at the point E. If EM bisects
the angle CED, prove that AB is a diameter of the circle k.

Problem 2.

Let q be a positive rational number. Two ants are initially at the same point X in the
plane. In the n-th minute (n = 1, 2, . . . ) each of them chooses whether to walk due
north, east, south or west and then walks the distance of qn metres. After a whole
number of minutes, they are at the same point in the plane (not necessarily X), but
have not taken exactly the same route within that time. Determine all possible values
of q.

Problem 3.

Alice and Bob play the following game: They start with two non-empty piles of coins.
Taking turns, with Alice playing first, each player chooses a pile with an even number
of coins and moves half of the coins of this pile to the other pile. The game ends if a
player cannot move, in which case the other player wins.

Determine all pairs (a, b) of positive integers such that if initially the two piles have a
and b coins respectively, then Bob has a winning strategy.

Problem 4.

Find all primes p and q such that 3pq−1 + 1 divides 11p + 17p.

Time allowed: 4 hours and 30 minutes.
Each problem is worth 10 points.
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S O L U T I O N S

Problem 1.

Let the line through M parallel to AB meet the segments AD, DH , BC, CH at points
K, P , L, Q, respectively. Triangle HPQ is isosceles, so MP = MQ. Now from

MP

BH
=

DM

DB
=

KM

AB
and

MQ

AH
=

CM

CA
=

ML

AB

we obtain AH/HB = KM/ML.

Let the lines AD and BC meet at point S and let the line SM meet AB at H ′. Then
AH ′/H ′B = KM/ML = AH/HB, so H ′ ≡ H , i.e. S lies on the line MH .

The quadrilateral ABCD is not a trapezoid, so AH �= BH . Consider the point A′ on
the ray HB such that HA′ = HA. Since �SA′M = �SAM = �SBM , quadrilateral
A′BSM is cyclic and therefore �ABC = �A′BS = �A′MH = �AMH = 90◦−�BAC,
which implies that �ACB = 90◦.

A A′ B

C

D

H

K
LMP

Q

S

Problem 2.

Answer: q = 1.

Let x
(n)
A (resp. x

(n)
B ) be the x-coordinates of the first (resp. second) ant’s position after

n minutes. Then x
(n)
A −x

(n−1)
A ∈ {qn,−qn, 0}, and so x

(n)
A , x

(n)
B are given by polynomials

in q with coefficients in {−1, 0, 1}. So if the ants meet after n minutes, then

0 = x
(n)
A − x

(n)
B = P (q),

where P is a polynomial with degree at most n and coefficients in {−2,−, 1, 0, 1, 2}.
Thus if q = a

b
(a, b ∈ N), we have a | 2 and b | 2, i.e. q ∈ {1

2
, 1, 2}.

It is clearly possible when q = 1.
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We argue that q = 1
2
is not possible. Assume that the ants diverge for the first time

after the kth minute, for k � 0. Then
∣∣∣x(k+1)

B − x
(k+1)
A

∣∣∣ +
∣∣∣y(k+1)

B − y
(k+1)
A

∣∣∣ = 2qk. (1)

But also
∣∣∣x(�+1)

A − x
(�)
A

∣∣∣+
∣∣∣y(�+1)

A − y
(�)
A

∣∣∣ = q� for each l � k + 1, and so

∣∣∣x(n)
A − x

(k+1)
A

∣∣∣ +
∣∣∣y(n)A − y

(k+1)
A

∣∣∣ � qk+1 + qk+2 + . . .+ qn−1. (2)

and similarly for the second ant. Combining (1) and (2) with the triangle inequality,
we obtain for any n � k + 1

∣∣∣x(n)
B − x

(n)
A

∣∣∣+
∣∣∣y(n)B − y

(n)
A

∣∣∣ � 2qk − 2
(
qk+1 + qk+2 + . . .+ qn−1

)
,

which is strictly positive for q = 1
2
. So for any n � k + 1, the ants cannot meet after n

minutes. Thus q �= 1
2
.

Finally, we show that q = 2 is also not possible. Suppose to the contrary that there is
a pair of routes for q = 2, meeting after n minutes. Now consider rescaling the plane
by a factor 2−n, and looking at the routes in the opposite direction. This would then
be an example for q = 1/2 and we have just shown that this is not possible.

Solution 2.

Consider the ants’ positions αk and βk after k steps in the complex plane, assuming
that their initial positions are at the origin and that all steps are parallel to one of the
axes. We have αk+1 − αk = akq

k and βk+1 − βk = bkq
k with ak, bk ∈ {1,−1, i,−i}.

If αn = βn for some n > 0, then

n−1∑

k=0

(ak − bk)q
k = 0, where ak − bk ∈ {0,±1± i,±2,±2i}.

Note that the coefficient ak−bk is always divisible by 1+ i in Gaussian integers: indeed,

ck =
ak − bk
1 + i

∈ {0,±1,±i,±1± i}.

Canceling 1 + i, we obtain c0 + c1q + · · ·+ cn−1q
n−1 = 0. Therefore if q = a

b
(a, b ∈ N),

we have a | c0 and b | cn−1 in Gaussian integers, which is only possible if a = b = 1.

Problem 3.

By v2(n) we denote the largest nonnegative integer r such that 2r | n.
A position (a, b) (i.e. two piles of sizes a and b) is said to be k-happy if v2(a) = v2(b) = k
for some integer k � 0, and k-unhappy if min{v2(a), v2(b)} = k < max{v2(a), v2(b)}.
We shall prove that Bob has a winning strategy if and only if the initial position is
k-happy for some even k.

• Given a 0-happy position, the player in turn is unable to play and loses.

• Given a k-happy position (a, b) with k � 1, the player in turn will transform it into
one of the positions (a+ 1

2
b, 1

2
b) and (b+ 1

2
a, 1

2
a), both of which are (k− 1)-happy

because v2(a +
1
2
b) = v2(

1
2
b) = v2(b+

1
2
a) = v2(

1
2
a) = k − 1.

3



Therefore, if the starting position is k-happy, after k moves they will get stuck at a
0-happy position, so Bob will win if and only if k is even.

• Given a k-unhappy position (a, b) with k odd and v2(a) = k < v2(b) = �, Alice
can move to position (1

2
a, b+ 1

2
a). Since v2(

1
2
a) = v2(b+

1
2
a) = k−1, this position

is (k − 1)-happy with 2 | k − 1, so Alice will win.

• Given a k-unhappy position (a, b) with k even and v2(a) = k < v2(b) = �, Alice
must not play to position (1

2
a, b+ 1

2
a), because the new position is (k− 1)-happy

and will lead to Bob’s victory. Thus she must play to position (a + 1
2
b, 1

2
b). We

claim that this position is also k-unhappy. Indeed, if � > k+1, then v2(a+
1
2
b) =

k < v2(
1
2
b) = �− 1, whereas if � = k + 1, then v2(a+

1
2
b) > v2(

1
2
b) = k.

Therefore a k-unhappy position is winning for Alice if k is odd, and drawing if k is
even.

Problem 4.

Answer: (p, q) = (3, 3).

For p = 2 it is directly checked that there are no solutions. Assume that p > 2.

Observe that N = 11p + 17p ≡ 4 (mod 8), so 8 � 3pq−1 + 1 > 4. Consider an odd prime
divisor r of 3pq−1 + 1. Obviously, r �∈ {3, 11, 17}. There exists b such that 17b ≡ 1
(mod r). Then r | bpN ≡ ap+1 (mod r), where a = 11b. Thus r | a2p−1, but r � ap−1,
which means that ordr(a) | 2p and ordr(a) � p, i.e. ordr(a) ∈ {2, 2p}.
Note that if ordr(a) = 2, then r | a2 − 1 ≡ (112 − 172)b2 (mod r), which gives r = 7
as the only possibility. On the other hand, ordr(a) = 2p implies 2p | r − 1. Thus, all
prime divisors of 3pq−1 + 1 other than 2 or 7 are congruent to 1 modulo 2p, i.e.

3pq−1 + 1 = 2α7βpγ11 · · · pγkk , (∗)

where pi �∈ {2, 7} are prime divisors with pi ≡ 1 (mod 2p).

We already know that α � 2. Also, note that

11p + 17p

28
= 11p−1 − 11p−217 + 11p−3172 − · · ·+ 17p−1 ≡ p · 4p−1 (mod 7),

so 11p + 17p is not divisible by 72 and hence β � 1.

If q = 2, then (∗) becomes 3p+1 = 2α7βpγ11 · · · pγkk , but pi � 2p+1, which is only possible
if γi = 0 for all i, i.e. 3p+ 1 = 2α7β ∈ {2, 4, 14, 28}, which gives us no solutions.

Thus q > 2, which implies 4 | 3pq−1 + 1, i.e. α = 2. Now the right hand side of (∗) is
congruent to 4 or 28 modulo p, which gives us p = 3. Consequently 3q+1 | 6244, which
is only possible for q = 3. The pair (p, q) = (3, 3) is indeed a solution.
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